THE SEMICONDUCTOR INDUSTRY FROM A GRAIN OF SAND TECHNOLOGY EMERGES

Dr. Alaa Alani BSc PhD MIET CEng

ALKINDI SOCIETY OF ENGINEERS 20 March 2021

AGENDA

- History & Evolution
- Fourth Industrial Revolution
- Advances in Electronics
- Semiconductors
 - Design Flow
 - Manufacturing
 - Microprocessor Examples
 - Supercomputers
- Global Semiconductor Market
- Electronics in Various Countries
- The Middle East
- Challenges and Opportunities
- Q&A

HISTORY & EVOLUTION

- First IR: 1760-1840
 - Mechanisation
 - Iron production
 - Steam power
 - Chemical manufacturing

Great Britain

- Second IR: 19th Century
 - Rapid industrialisation
 - Production technology
 - Electrical power
 - Telegraph
 - Rail roads

HISTORY & EVOLUTION (CONT.)

• Third IR: 1950-1970

- Digitalisation
- Computer
- Communication technology
- Information technology

4TH INDUSTRIAL REVOLUTION

• Fourth IR: Today

- Mix of science & technology
- Robotics
- Artificial intelligence
- Deep learning
- Internet of things
- Cloud computing

ADVANCES IN ELECTRONICS

Electronic Devices

Single Board Computer

Computers

أشباه الموصلات

Block Diagram Architecture

Design

Synthesis

Layout

SEMICONDUCTORS

• Inverter layout alternatives:

Basic Physical Design of Simple Logic Gates

Layout

Manufacturing

Test & Packaging

Assembly

Final Product

- Step 1:
 - Get silica sand (silicon dioxide)
 - Mix with carbon and remove oxygen in high temperature
 - Treat with oxygen to purify to 99%
 - Grind to fine powder
 - Add hydrogen chloride and heat to 300 $^{\circ}\mathrm{C}$
 - Distil to get ultra purity of 99.99999%

• Step 2:

- Purify from polycrystalline structure
- Melt silicon crystals in a quarts crucible at 1414 °C
- Dip a tiny crystal into molten silicon to attract silicon while spinning
- Create a cylinder of pure silicon of 300mm across
- Step 3:
 - Slice the silicon rod into discs of 775um thick
 - Lap the wafers by polishing with slurry
 - Treat with acids to make smoother wafers

• Step 4:

- Heat up silicon wafers to create silicon dioxide
- Make patterns using photoresist chemicals
- Expose wafers to UV light through photographic mask
- Move wafer in steps to repeat the process
- Treat with chemicals to remove oxide and create patterns (circuit features)
- Step 5:
 - The fundamental building of a transistor is called MOSFET (Metal Oxide Semiconductor Field Effect Transistor
 - MOSFETS are basically switches (either ON or OFF)
 - The wafer is blasted with boron ions blocked by the photoresist layer to direct the beam to precise locations to create a P-Well
 - A similar process using phosphorous ions creates N-Well
 - These wells are called drain and source

- Step 6:
 - Transistors need a gate an electrode covered by a thin layer of metal oxide sitting between the drain and source
 - Intel has invented a 3D gate called FinFET that allowed a drop of transistor size from 90 nm to 22nm (1nm = 1 millionth of a millimeter)
 - Billions of transistors on the wafer are formed
- Step 7:
 - Transistors are connected by ultra thin copper interconnects guided by a layer of photoresist
 - Holes or vias are filled with metal to form pins
 - Due to the high number of connections required multiple (6-11) layers of interconnects are required

- Step 8:
 - Such an incredibly complex process is prone to potential problems, bad or defective chips will be discarded
 - A typical yield from a wafer is 80% although higher yields can be achieved in some processes
 - Wafers are tested using wafer probes that mark defective chips (also called dies)
 - Wafers are sliced into individual chips and sent for packaging
 - Packages provide strength and protect fragile dies from external contamination, stress, dust, etc.
 - Packaged dies are soldered down on printed circuit boards to be used in computers, mobile phones and other systems

MICROPROCESSOR EXAMPLE

- Zen 2 (Epyc Rome)
 - AMD processor
 - TSMC 7nm FinFET
 - 39.54 billion MOSFETs
 - 8 dies in a single package
- Apple M1
 - 8 Core processor SoC
 - TSMC 5nm FinFET
 - 16 billion MOSFETs
 - Neural Network 11 trillion transaction per sec

SUPER COMPUTERS

- Summit
 - US Dept of Energy
 - 2,282,544 IBM Power 9 cores
 - 2,090,080 Nvidia Volta GV100 cores
 - Peak performance 187.66 peta flops ¥
 - 11.324 giga flops per Watt
- Tianhe-2A (Milky Way 2A)
 - China's National University of Defence
 - ~ 5million Intel Xenon and Matrix 2000 cores
 - Peak performance 61.4 peta flops
 - 3.325 giga flops per Watt

¥ = 1015 floating point operation per second

SEMICONDUCTOR MARKET

WAFER FABS

- TSMC (\$47.78b) 28%
 UMC 13%
- SAMSUNG 11%
- SMIC
- GF 7%

10%

- XFAB
- TOWER JAZZ

SEMICONDUCTOR MARKET

- Global Market Size
- Semiconductor sales \$439 billion in 2020

Source: Semiconductor Industry Association $\circledast \mathit{FT}$

CHIP DESIGN MARKET

Semiconductor revenues

By Industry segment and country (% share)

CHIP DESIGN MARKET

Fabless chip designers' sales by country/region (in percent)

ELECTRONICS IN VARIOUS COUNTRIES

- Malysia: electronic exports \$30bn in 2013
- Thailand: Electronic industry is valued at \$100bn mainly automotive electronic parts
- The Philippines: Electronics shipments totalled \$37.57bn in 2018
- Singapore: Electronic industry is valued at \$37.4bn in 2017
- Israel: 5 Fabs and more than 15 fabless companies; 20,000 employees with annual revenues of \$5bn
- Brazil: Semi Revenues \$552.8m in 2019

Source: PwC Research: Opportunities for the global semiconductor market report

ELECTRONICS IN VARIOUS COUNTRIES

- Malysia: electronic exports \$30bn in 2013
- Thailand: Electronic industry is valued at \$100bn mainly automotive electronic parts
- The Philippines: Electronics shipments totalled \$37.57bn in 2018
- Singapore: Electronic industry is valued at \$37.4bn in 2017
- Israel: 5 Fabs and more than 15 fabless companies; 20,000 employees with annual revenues of \$5bn
- Brazil: Semi Revenues \$552.8m in 2019

THE MIDDLE EAST

- Silicon Oasis was established in Dubai started Pilot Design Environment to establish the Dubai Circuit Design (DCD) centre in 2001
- Abu Dhabi established Advanced Technology Investment Company (ATIC) in 2008 which invested in AMD to create Global Foundry which is 100% owned by Abu Dhabi since 2012
- Masdar Institute of Science and Technology in Abu Dhabi collaborated with Global Foundry on 28nm SLP low-power bulk CMOS technology in 2014
- Egypt started tech start-up in 1993 with Anacad. In 2004, two chip design companies emerged to cater for customers in the ES, Europe and Asia. Currently, 17 fab-less companies form the semiconductor sector in Egypt
- Morocco was the first Arab country to enter semiconductor industry established by ST Micro – A French company in 2003. Acquired by Sondrel 2015
- Morocco manufactures and exports small devices and micro chips for wafer level optics (Nemotek 2009-15)

CHALLENGES AND OPPORTUNITIES

• Challenges

- High capital
- Lack of experienced engineers
- Long term investment in R&D
- Small national/regional markets (echo system)
- Lack of knowledge of global semiconductor markets' needs
- Opportunities
 - Economic growth and diversity
 - Security: military, telecommunication, data, intelligence, etc.
 - Highly rewarding jobs
 - Creates local talents
 - Absorbs graduates and feeds into other sectors

